2x+x^2-26=2(x+5)

Simple and best practice solution for 2x+x^2-26=2(x+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x+x^2-26=2(x+5) equation:



2x+x^2-26=2(x+5)
We move all terms to the left:
2x+x^2-26-(2(x+5))=0
We calculate terms in parentheses: -(2(x+5)), so:
2(x+5)
We multiply parentheses
2x+10
Back to the equation:
-(2x+10)
We get rid of parentheses
x^2+2x-2x-10-26=0
We add all the numbers together, and all the variables
x^2-36=0
a = 1; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·1·(-36)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{144}=12$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12}{2*1}=\frac{-12}{2} =-6 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12}{2*1}=\frac{12}{2} =6 $

See similar equations:

| 3g+14=56 | | 3(6n+2)=60 | | 1/5(m+10)=8 | | t/4+4=7 | | -3(4p+5)-2(5-11p)=3(5+3p) | | r+27=304 | | 10x4=24 | | 14-3j=8 | | 4m-5=3m-3 | | 2x+13+5x-20=180 | | 27.50+2.25c=5.50+4.25c | | k-(-29)=85 | | x+(3x)+90=180 | | x+(3x)+90=1800 | | -15=k/(-22) | | 4(m+14)=140 | | 3(x+2)=16-2x | | (10w=120)+(45w=25) | | t-15=38 | | -10+2r-8=5r+3 | | r-43=31 | | 8c+6(-7+-2c)= | | x/x/7-3=0 | | 12(x+8)=11x−5 | | 20-4n=6-1+11n | | -4/1/3x-1/4=2/1/3 | | 3j=2j-20 | | m/3=m=4/7 | | -19+8t=5+10t | | -23=j+45 | | 11x−2x+15=8+7+9x | | -4q-1=-10-3q |

Equations solver categories